Environmental Performance

Environmental-Related Data

This page outlines the environmental activities of each of Hino Motors production plants as well as data based on environment-related laws and regulations.

- > Headquarters/Plants in Japan
- Other Bases in Japan
- Overseas

Headquarters and Hino Plant

Headquarters and Hino Plant Overview

Address	1-1, Hinodai 3-chome, Hino-shi, Tokyo
Major products	Heavy-duty trucks (Hino Profia) Medium-duty trucks (Hino Ranger)
Employees	6,000
Site area	447,081 m ²
Total floor space	405,243 m ²

Acquisition of ISO 14001 certification: March 24, 2001

Environmental Policies

- 1. Harmonious coexistence with society and the environment
- 2. Continuous improvements and prevention of environmental pollution
- 3. Compliance with laws and regulations
- 4. Mottainai mindset is the basis for all activities
- 5. Enhancement of individual environmental awareness

Through Each Plant Hino Motors Strives to Manufacture Quality Vehicles and Support Transportation that is Friendly to the Earth and People

At our Headquarters & Hino Plant, we are actively establishing varied and diverse targets that set the direction for our environmental initiatives. In diligently working to achieve these goals, Hino Motors is endeavoring to minimize the environmental load created by both production and distribution processes. Based on these activities, we recognize that continuing efforts to supply products with leading environmental performance to society lie at the heart of our corporate social responsibility. As a result, we constantly review and work to lower the environmental load of every function of our business from development to purchasing, production, preparation, and office management. In this manner, our ultimate goal is to harmoniously coexist with the global environment. Furthermore, in addition to the mottainal mindset held by each employee, which in Japanese conveys an attitude of preventing waste, we make efforts to eliminate muda, mura, and muri (unprofitable, unsteady and unreasonable, respectively) in our energy-saving and resource-saving activities while at the same time engaging in activities aimed at protecting the natural environment.

Located in close proximity to a residential area, Hino Plant makes every effort not to disturb or comprise the lives of its neighbors. As a result, we strictly adhere to measures that minimize noise, vibration, and odor. Looking ahead, we will continue to manufacture quality vehicles and support transportation that is friendly to the earth and people.

Award Record

FY2003

FY2014

Committee

F 1 2005	Committee
FY2006	Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization Committee
FY2007	Winner of the Highest Award for Electric Safety and Electricity Usage Rationalization Committee
FY2008	Winner of the Highest Award for Electric Safety and Electricity Usage Rationalization Committee
FY2008	Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization Committee
FY2008	Winner of the Chairperson's Award presented by the High Pressure Gas Safety Institute of Japan
FY2009	Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization Committee
FY2010	Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization Committee
	Winner of the Highest Award for Electric Safety and Electricity Usage Rationalization Committee
FY2011	Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization Committee
	Winner of the Highest Award for Electric Safety and Electricity Usage Rationalization Committee
FY2012	Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization Committee
	Winner of the Highest Award for Electric Safety and Electricity Usage Rationalization Committee
FY2013	Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization Committee
	Winner of the Highest Award for Electric Safety and Electricity Usage Rationalization Committee
	, , , , , , , , , , , , , , , , , , , ,

Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization

Winner of the Highest Award presented by the Chairperson of the Electric Safety Kanto Committee

■ Data Based on Environment-Related Laws and Regulations

Water Quality (Water Pollution Control Law and Prefectural Ordinances)
Effluent water quality analysis (river channel and discharge site: Tama River via Yaji River)

Item	Unit	Regulatory limit	Max.	Min.	Avg.
Discharge volume	m³/day	-	7,115	521	2,531
рН		5.8~8.6	7.6	7.1	7.4
BOD	mg/l	20	4.1	0.7	1.3
COD	mg/l	_	13	2.3	7.1
ss	mg/l	40	2.0	1	1.5
N-hexane	mg/l	5	ND	ND	ND
Total phosphorous	mg/l	2	1	ND	0.4
Total nitrogen	mg/l	20	14.8	1.9	8.6
Zinc content	mg/l	2	0.09	0.05	0.07
Fluorine compounds	mg/l	8	0.22	0.19	0.21

ND: Not Detected (Less than the minimum determined limit)

■ Air Quality (Air Pollution Control Law and Prefectural Ordinances)

Equipment	Measured substance	Unit	Regulatory limit	Max.	Min.	Avg.
Boilers (processed natural gas)	NOx	ppm	_	46	18	28
	Soot and dust	g/Nm ³	_	ND	ND	ND
Gas carburizing furnace #1 (processed natural gas)	NOx	ppm	180	71	71	71
	Soot and dust	g/Nm³	0.2	ND	ND	ND

ND: Not Detected (Less than the minimum determined limit)

■ Chemical Substances (PRTR Law)

(Unit: tons/year)

Cabinet Order	Class I Designated	Volume	Volume discharged		Volume transferred		Volume	Volume	Volume
No.	Chemical Substances	handled	Air	Water	Waste	Public sewer system	recycled	removed/ disposed	consumed
1	Water-soluble zinc compound	2.9	0	0	0	0	0	2.9	0
53	Ethylbenzene	20.0	10	0	5.2	0	0	4.2	1
80	Xylene	67.0	35	0	12	0	0	14.0	6
188	NN-dicyclohexylamine	3.9	0	0	3.9	0	0	0	0
190	Dicyclopentadiene	3.1	0	0	0	0	0	0	3.1
240	Styrene	14	0.8	0	0	0	0	0	13
296	1,2,4-trimethylbenzene	52	16	0	31	0	0	0	4.0
297	1,3,5-trimethylbenzene	8.5	3.3	0	4.9	0	0	0	0
300	Toluene	32	11.0	0	0.0	0	0	8.5	13
392	N-hexane	5.3	0.29	0	0	0	0	0	5.0
400	Benzene	0.94	0.05	0	0.0	0	0	0	0.89
412	Manganese and its compounds	2.9	0	0	0.8	0.028	0	0	2.1
438	Methylnaphthalene	13	0.64	0	0	0	0	0	12

Applies to volumes handled equal to one ton or more (or 500 kg or more in the case of Specified Class I Designated Chemical Substances) Volume removed/disposed: Volume removed by incineration, decomposition or other treatment method

Volume consumed: Volume converted to other substances by chemical reaction or incorporated in or appended to products and removed from the premises

Plant Overview

Address	3-1-1 Midorigaoka, Hamura-shi, Tokyo
Major products	Light-duty trucks (Hino Dutro, Dyna, Toyoace, Land Cruiser Prado, and FJ Cruiser)
Employees	3,400
Site area	750,770 m ²
Total floor space	382,781 m ²

Acquisition of ISO 14001 certification: March 10, 1999

Environmental Policies

- 1. Compliance with laws and regulations
- 2. Preventive measures through continuous improvements and prevention of pollution
- 3. Promotion of energy saving, resource saving, and reduction of waste
- 4. Harmonious relations with local communities

We are aiming to produce light-duty commercial vehicles for the world as a mother factory trusted by the community

"Each of us can apply ideas as professionals and show the world Hamura's great potential" is our motto at the Hamura Plant. Under this motto, we are carrying out environmental conservation measures and improvement activities that consider the environment from various perspectives. As a production plant that strives to protect and preserve the environment, the Hamura Plant has set ambitious goals for all employees to pursue, and it is actively implementing measures for reducing greenhouse gases in order to fight against global warming.

Everyone takes part in these measures with an awareness of their responsibility to deal with environment-related changes and risks. Specifically, we follow three principles of action on the actual site, focusing on the actual things at hand and always recognizing the reality of the situation, while making sure that we never avoid environmental preservation activities that are difficult, challenging, or troublesome.

Recognizing that safety is the basis for all activities, the Hamura Plant is aiming to produce light-duty commercial vehicles for the world as a mother factory trusted by the community.

Award Record

October 2004	Winner of the Chairperson's Award presented by the High Pressure Gas Safety Institute of Japan
February 2005	Winner of the Director-General's Award presented by the Natural Resources and Energy Agency
February 2006	Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization Committee
February 2007	Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization Committee
February 2008	Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization Committee
February 2008	Winner of the Chairperson's Award presented by the Energy Conservation Center
February 2009	Winner of the Ministry of Economy, Trade and Industry Minister's Award for Excellence in Plant
	Energy Management
February 2010	Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization
	Committee
February 2011	Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization Committee
February 2012	Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization Committee
February 2013	Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization Committee
February 2013	Hamura Plant awarded for energy conservation
February 2014	Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization
	Committee
February 2015	Winner of the Highest Award presented by the Kanto Region Electricity Usage Rationalization Committee

■ Data Based on Environment-Related Laws and Regulations

Water Quality (Sewerage Law) and Effluent Water Quality Analysis (Sewer Effluent)

Item	Unit	Regulatory limit	Max.	Min.	Avg.
Discharge volume	m ³ /day	-	5,414	4	2,102
рН		5.7~8.7	7.4	6.8	7.2
BOD	mg/l	300	39	2.2	8.1
SS	mg/l	300	110	1.0	9.7
N-hexane	mg/l	5	ND	ND	ND
Total phosphorous	mg/l	16	5.9	0.2	2.7
Total nitrogen	mg/l	120	26	3.8	7.5
Zinc content	mg/l	2	0.41	0.2	0.3
Fluorine compounds	mg/l	8	0.99	0.88	0.9

ND: Not Detected (Less than the minimum determined limit)

■ Air Quality (Air Pollution Control Law and Prefectural Ordinances)

Equipment	Measured substance	Unit	Regulatory limit	Max.	Min.	Avg.
Cogeneration equipment (processed natural gas)	NOx	ppm	35	27	14	21
	Soot and dust	g/Nm³	0.05	ND	ND	ND
Drying furnaces (processed natural gas)	NOx	ppm	230	56	8	22
	Soot and dust	g/Nm ³	0.2	0.005	ND	0.001

ND: Not Detected (Less than the minimum determined limit)

■ Chemical Substances (PRTR Law)

(Unit: tons/year)

Cabinet	Class I Designated	Volume	Volume discharged		Volume transferred		Volume	Volume	Volume	
Order No.	Chemical Substances	handled	Air	Water	Waste	Public sewer system	recycled	removed/ disposed	consumed	
1	Water-soluble zinc compound	11	0	0	0	0	0	11	0	
53	Ethylbenzene	65.0	49	12	0.0	0	1.7	3.3	11	
57	Ethylene glycol monoethyl ether	4.6	4.6	16	0.0	0	0	0	0	
80	キシレン	160	100	24	0.1	0	3.9	6.4	51	
133	Acetic acid-2-ethoxyethyl	6.0	6.0	32	0.0	0	0	0	0	
188	NN-dicyclohexylamine	3.4	0	36	3.4	0	0	0	0	
296	1,2,4-trimethylbenzene	88	42	52	0.0	0	10	0.9	35	
297	1,3,5-trimethylbenzene	13	11	56	0.0	0	1.1	0.63	0	
300	Toluene	170	59	60	0.0	0	0	2.8	113	
309	Nickel compounds	1.7	0	68	0.9	180.00	0	0.0	0.64	
392	N-hexane	45	2.4	76	0	0	0	0	43	
400	Benzene	8.1	0.44	80	0	0	0	0	7.7	
411	Formaldehyde	1.5	1.4	84	0.0	0	0	0.16	0	
412	Manganese and its compounds	15	0	88	2.7	70.0	0	0	12	
438	Methylnaphthalene	1.5	0.08	92	0	0	0	0	1.4	

Applies to volumes handled equal to one ton or more (or 500 kg or more in the case of Specified Class I Designated Chemical Substances) Volume removed/disposed: Volume removed by incineration, decomposition or other treatment method

Volume consumed: Volume converted to other substances by chemical reaction or incorporated in or appended to products and removed from the premises

Nitta Plant

Plant Overview

Address	10-1 Nittahayakawa-cho, Ota-shi, Gunma Prefecture
Major products	Medium- and light-duty truck engines, medium- and heavy-duty truck transmissions, and medium-duty truck axles
Employees	1,800
Site area	501,333 m ²
Total floor space	251,642 m ²

Acquisition of ISO 14001 certification: March 27, 2000

Environmental Policies

- 1. Harmony with the community and harmonious coexistence with the environment
- 2. Prevention of environmental pollution as the base for all operations
- 3. Compliance with laws and regulations
- 4. No waste and no wasteful use
- 5. Enhancement of each individual's environmental awareness

At the Nitta Plant, located in a lush green setting, we have made the 3Ss (seiri, seiton and seisou, meaning well-organized, well-arranged and clean) as the basis for all plant activities. We are also promoting environmental conservation and improvement activities with a sustained awareness of environmental load based on the Nitta Plant Environment Policy

By working to prevent environmental risks before they occur focusing particularly on upstream production activities, we are working to alleviate environmental risk. As a further initiative for reducing load of the environment, all plant personnel are aiming at higher goals for the prevention of global warming. At the same time, we will make efforts to maintain a clean plant that is accepted by the local community as friendly to people and the environment.

Award Record

FY1999 Winner of the Director's Award in the Electric Lighting category presented by the Kanto Bureau of

International Trade and Industry

FY2001 Winner of the Director's Award in the Heating category presented by the Kanto Bureau of Economy,

Trade and Industry

Winner of the Director-General's Award (Electrical Division) presented by the Natural Resources and FY2002

Energy Agency

FY2003 Winner of the Energy Conservation Activity Excellent Group Award presented by the Kanto Bureau of

Economy, Trade and Industry

FY2004 Winner of the Director-General's Award (Heat Division) presented by the Agency for Natural

Resources and Energy

■ Data Based on Environment-Related Laws and Regulations

Water Quality (Water Pollution Control Law, Prefectural Ordinances and Environmental Pollution Prevention Agreement with the Local Government) Effluent water quality analysis (river channel and discharge site: Tone River via Hayakawa River)

Item	Unit	Regulatory limit	Max.	Min.	Avg.
Discharge volume	m³/day	-	585	1	238
рН		6.0~8.0	7.4	6.8	7.2
BOD	mg/l	10	1.1	ND	1
SS	mg/l	15	ND	ND	ND
N-hexane	mg/l	3	ND	ND	ND
Total phosphorous	mg/l	60	ND	ND	ND
Total nitrogen	mg/l	120	31	14	20.0
Zinc content	mg/l	1	0.04	ND	0.02
Fluorine compounds	mg/l	1.5	0.14	0.13	0.14

ND: Not Detected (Less than the minimum determined limit)

■ Air Quality (Air Pollution Control Law and Prefectural Ordinances)

Equipment	Measured substance	Unit	Regulatory limit	Max.	Min.	Avg.
Continuous furnaces #1 (kerosene)	NOx	ppm	180	120	62	88
Continuous lumaces #1 (kerosene)	Soot and dust	g/Nm ³	0.1	0.029	ND	0.012

ND: Not Detected (Less than the minimum determined limit)

Cabinet	Class I Designated	Volume		ume arged	Vol	lume transferred	Volume	Volume	Volume
Order No.	Chemical Substances	handled	Air	Water	Waste	Public sewer system	recycled removed/ disposed		consumed
31	Antimony and its compounds	5.9	0	0	0.12	0	0	0	5.8
53	Ethylbenzene	14	14	0	0.0	0	0	0	0
71	Ferric chloride	29	0	0	0	0	0	0	29
80	Xylene	35	27	0	0.1	0	0	0	7.9
87	Chromium & trivalent chromium compounds	18	0	0	0.4	0	0	0	18
188	NN-dicyclohexylamine	5.3	0.05	0	5.2	0	0	0	0
277	Triethylamine	69	0	0	0	0	0	69	0
296	1,2,4-trimethylbenzene	15	7.5	0	0.0	0	0	0	8
297	1,3,5-trimethylbenzene	25.0	25.0	0	0.0	0	0	0	0
300	Toluene	36	33	0	0.1	0	0	0	2.9
302	Naphthalene	2.3	0	0	0	0	0	2	0.0
309	Nickel compounds	1.4	0	11.0	0	180	0	0	1.3
349	Phenol	9	0	0	0	0	0	9	0
392	N-hexane	1.8	0.71	0	0	0	0	0	1.1
412	Manganese and its compounds	1.4	0	27.0	0.49	70	0	0	0.9
438	Methylnaphthalene	13	0.6	0	0	0	0	0	12
448	4,4-MDI	62	0	0	0	0	0	0	62
453	Molybdenum and its compounds	22	0	4	0	0	0	0	22

Applies to volumes handled equal to one ton or more (or 500 kg or more in the case of Specified Class I Designated Chemical Volume removed/disposed: Volume removed by incineration, decomposition or other treatment method

Volume consumed: Volume converted to other substances by chemical reaction or incorporated in or appended to products and removed from the premises

Oume Parts Center

The Center is responsible for truck and bus parts and components, and transports them nationwide.

Acquisition of ISO 14001 certification: January 11, 2002

Center Overview

Address	1-5-1 Suehiro-cho, Ome-shi, Tokyo
Description of business	Management and transport of service parts
Employees	62
Site area	26,288 m ²
Total floor space	31,533 m ²

Environmental Policies

- 1. Harmonious coexistence with the environment
- 2. Prevention of environmental pollution and sustained improvement
- Compliance with laws and regulations
 Streamlining the flow of goods
- 5. Enhancing each individual environmental awareness

Hidaka Delivery Center

Hidaka Delivery Center manages and controls finished products (trucks) and delivery to body manufacturers and dealers nationwide.

Acquisition of ISO 14001 certification: January 11, 2002

The Americas

Center Overview

Address	689-1 Kamikayama, Hidaka-shi, Saitama Prefecture
Description of business	Management and transport of products (trucks)
Employees	12
Site area	265,989 m ²
Total floor space	10,118 m ²

Environmental Policies

- 1. Harmonious coexistence with the environment
- 2. Prevention of environmental pollution and sustained improvement
- Compliance with laws and regulations
 Streamlining the flow of goods
- 5. Enhancing each individual environmental awareness

Company Overview

Company name	Hino Motors Manufacturing U.S.A., Inc.
Head office address	37777 Interchange Drive, Farmington Hills, MI 48335
Description of business	Manufacture of Hino Motors vehicles, sale of service parts, manufacture and sale of automobile parts and components, other

Environmental Policies

- 1. $\mbox{\bf H}$ elp reduce our impact on the environment.
- 2. I ncrease prevention of pollution efforts and recycle.
- 3. ${\bf N}$ ever be out of compliance with regulations.
- 4. Opportunities for continual Improvement.

CO ₂ emissions	19,667 t-CO ₂
Incinerated waste	10,933 t
Water usage	14,000 m ³

Thailand

Company Overview

Company name	Hino Motors Manufacturing (Thailand) Ltd.
Head office address	No. 99 Moo 3, Thepharak Road, Samrong Nua, Muang Samutprakarn, Samutprakarn Province, Thailand
Description of business	Manufacture and sale of Hino Motors trucks and buses, manufacture and sale of automobile parts and components

Environmental Policies

- 1. Coexist in harmony with the global environment
- 2. Strengthen and manage the company's environmental pollution prevention structure and systems
- 3. Ensure strict compliance with laws, regulations and other environmental policies
- 4. Protect energy and natural resources
- Forest energy and natural resources
 Ensure appropriate waste disposal and treatment
 Promote employee awareness
 Promote environmental policy disclosure

■ Data Based on Environment-Related Laws and Regulations

CO ₂ emissions	29,170 t-CO ₂
Incinerated waste	12,479 t
Water usage	305,000 m ³

Indonesia

Company Overview

Company name	PT. Hino Motors Manufacturing Indonesia
Head office address	Kawasan Industri Kota Bukit Indah Blok D1 No.1 Purwakarta 41181, Jawa Barat, Indonesia
Description of business	Manufacture and sale of Hino Motors trucks and buses

Environmental Policies

- 1. Coexist harmoniously with the environment
- 2. Position prevention at the heart of all business activities
 3. Ensure strict compliance with laws and other regulations
- 4. No waste and no wasteful use
- 5. Promote individual awareness

CO ₂ emissions	14,920 t-CO ₂
Incinerated waste	2,671 t
Water usage	101,000 m ³

Company Overview

Company name	Hinopak Motors Limited
Head office address	D-2, S.I.T.E. Manghopir Road Karachi-75700, Pakistan
Description of business	Manufacture and sale of Hino Motors trucks and buses, supply and sale of mounting superstructures and the import and sale of service parts

Environmental Policies

- 1. Promote the prevention of pollution and environmental load reduction
- 2. Effectively use energy and other resources
- 3. Ensure strict compliance with environmental laws and regulations
- 4. Continuously improve environmental performance
- 5. Implement employee education and training

■ Data Based on Environment-Related Laws and Regulations

CO ₂ emissions	2,797 t-CO ₂
Incinerated waste	445 t
Water usage	51,000 m ³

Shanghai, China

Company Overview

Company name	Shanghai Hino Engine Co., Ltd.
Head office address	179, Huancheng East Road, Fengxian District, Shanghai, China
Description of business	Manufacture and sale of Hino Motors' brand engines

Environmental Policies

- 1. Comply with statutory and regulatory requirements
- Take personal ownership and responsibility for environmental protection endeavors
- 3. Enhance the effective use of resources and energy as the means for eliminating waste
- 4. Raise employee awareness of environmental protection

CO ₂ emissions	2,226 t-CO ₂
Incinerated waste	305 t
Water usage	16,000 m ³

Vietnam

Company Overview

Company name	Hino Motors Vietnam, Ltd.
Head office address	Hoang Liet, Hoang Mai, Hanoi, Vietnam
Description of business	Manufacture and sale of Hino Motors trucks, and the import and sale of imported service parts

Environmental Policies

- 1. Comply with legal requirements and relevant regulations
- 2. Employ capable human resources as a means to minimize serious environmental risks
- 3. Continuously implement environmental management systems to minimize consumption of resources
- 4. Promote environmental policies that raise employees' awareness of the environment and their responsibilities

■ Data Based on Environment-Related Laws and Regulations

CO ₂ emissions	674 t-CO ₂
Incinerated waste	132 t
Water usage	4,000 m ³

Canada

Company Overview

Company name	Hino Motors Canada, Ltd.
Head office address	395 Ambassador Drive, Mississauga, Ontario, Canada L5T 2J3
Description of business	Manufacture and sale of Hino trucks; import and sale of service parts

Environmental Policies

- 1. $\ensuremath{\mathbf{H}}$ elp reduce our impact on the environment.
- 2. I $\,$ ncrease prevention of pollution efforts and recycle.
- 3. **N** ever be out of compliance with regulations.
- 4. Opportunities for continual Improvement.

CO ₂ emissions	876 t-CO ₂
Direct landfill waste	95 t
Water usage	1,000 m ³

Mexico

Company Overview

Company name	Hino Motors Manufacturing Mexico, S.A. de C.V.
Head office address	Circuito Mexiamora Sur #302, Parque Industrial, Santa Fe
Description of business	Manufacture and wholesale of Hino trucks

Environmental Policies

- 1. Protect the environment through activities designed to conserve resources, encourage recycling, and prevent pollution

 2. Ensure compliance with legal requirements and environment-
- related regulations
- 3. Implement continuous improvements to the environmental management system
- 4. Promote environmental policies to employees and business partners such as suppliers

■ Data Based on Environment-Related Laws and Regulations

CO ₂ emissions	73 t-CO ₂
Direct landfill waste	60 t
Water usage	1,000 m ³

Previous Report

Previous Report : FY2013 Previous Report : FY2012 ➤ Previous Report : FY2011 ➤ Previous Report : FY2010 ➤ Previous Report : FY2009 ➤ Previous Report : FY2008